

Monday 10 June 2013 – Morning

A2 GCE MATHEMATICS

4727/01 Further Pure Mathematics 3

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4727/01
- List of Formulae (MF1)

Duration: 1 hour 30 minutes

Other materials required: • Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found in the centre of the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

1	The plane Π passes through the points with coordinates (1, 6, 2), (5, 2, 1) and (1, 0, -2).	

- (i) Find a vector equation of Π in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$. [2]
- (ii) Find a cartesian equation of Π . [4]
- 2 G consists of the set $\{1, 3, 5, 7\}$ with the operation of multiplication modulo 8.

(i)	Write down the operation table and, assuming associativity, show that G is a group.	[5]
(ii)	State the order of each element.	[1]
(iii)	Find all the proper subgroups of G.	[1]

The group *H* consists of the set $\{1, 3, 7, 9\}$ with the operation of multiplication modulo 10.

- (iv) Explaining your reasoning, determine whether *H* is isomorphic to *G*. [2]
- **3** The differential equation

$$3xy^2\frac{\mathrm{d}y}{\mathrm{d}x} + 2y^3 = \frac{\cos x}{x}$$

is to be solved for x > 0. Use the substitution $u = y^3$ to find the general solution for y in terms of x. [8]

- 4 The complex numbers 0, 3 and $3e^{\frac{1}{3}\pi i}$ are represented in an Argand diagram by the points *O*, *A* and *B* respectively.
 - (i) Sketch the triangle *OAB* and show that it is equilateral. [3]

[2]

- (ii) Hence express $3 3e^{\frac{1}{3}\pi i}$ in polar form.
- (iii) Hence find $(3 3e^{\frac{1}{3}\pi i})^5$, giving your answer in the form $a + b\sqrt{3}i$ where a and b are rational numbers. [3]

5 Find the solution of the differential equation
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 5y = e^{-x}$$
 for which $y = \frac{dy}{dx} = 0$ when $x = 0$.
[11]

- 6 The plane Π has equation x + 2y 2z = 5. The line *l* has equation $\frac{x-1}{2} = \frac{y+1}{5} = \frac{z-2}{1}$.
 - (i) Find the coordinates of the point of intersection of l with the plane Π . [3]
 - (ii) Calculate the acute angle between l and Π . [3]
 - (iii) Find the coordinates of the two points on the line l such that the distance of each point from the plane Π is 2. [5]

A commutative group G has order 18. The elements a, b and c have orders 2, 3 and 9 respectively.

(i) Prove that <i>ab</i> has order 6.	[4]

(ii) Show that G is cyclic. [3]

8	(i)	Use de Moivre's theorem to show that $\cos 5\theta \equiv 16\cos^5\theta - 20\cos^3\theta + 5\cos\theta$.	[5]
---	-----	--	-----

- (ii) Hence find the roots of $16x^4 20x^2 + 5 = 0$ in the form $\cos \alpha$ where $0 \le \alpha \le \pi$. [4]
- (iii) Hence find the exact value of $\cos \frac{1}{10}\pi$. [3]

(Question		Answer	Marks	Guidance		
1	(i)		vectors in plane: two of $\begin{pmatrix} -4\\4\\1 \end{pmatrix}$, $\begin{pmatrix} 0\\6\\4 \end{pmatrix} = 2 \begin{pmatrix} 0\\3\\2 \end{pmatrix}$, $\begin{pmatrix} 4\\2\\3 \end{pmatrix}$	M1	Differences between two pairs	Any multiple	
			$\mathbf{r} = \begin{pmatrix} 1\\6\\2 \end{pmatrix} + \lambda \begin{pmatrix} 0\\3\\2 \end{pmatrix} + \mu \begin{pmatrix} 4\\2\\3 \end{pmatrix}$	A1	Aef of parametric equation	Must have " r ="	
1	(ii)		(0) (4) (5)				
	(11)		$\begin{bmatrix} 0\\3\\2 \end{bmatrix} \times \begin{bmatrix} 2\\3\\3 \end{bmatrix} = \begin{bmatrix} 3\\8\\-12 \end{bmatrix}$	M1 A1	Calculate vector product or multiple	M1 can be awarded where vector product has method shown or only one term wrong	
			$\left(\mathbf{r} - \begin{pmatrix} 1\\6\\2 \end{pmatrix} \right) \cdot \begin{pmatrix} 5\\8\\-12 \end{pmatrix} = 0$	M1		Or Cartesian form = d with attempt to compute d	
			5x + 8y - 12z = 29	A1	Aef of cartesian equation, isw.		
				[4]			
			Alternate method				
				M1 A1 M1A1	EITHER x, y, z in parametric form both parameters in terms of e.g. x, y substitute into parametric form of z		
				M1 A1 M1 A1	OR <i>x, y, z</i> in parametric form 2 equations in <i>x, y, z</i> and one parameter eliminate parameter		

4727

Question		Answer	Marks	Guidance	
2	(i)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B2	-1 each error	
		From table clearly closed	B1		Must be clear they are referring to tabulated results
		1 is identity	B1		
		$3^{-1} \equiv 3, 5^{-1} \equiv 5, 7^{-1} \equiv 7 \pmod{8}$	B1		Or "1 appears in every row"
			[5]	Superfluous fact/s gets -1	
2	(ii)	1 has order 1 and 3, 5, 7 all have order 2	B1 [1]		
2	(iii)	$\{1, 3\}, \{1, 5\}, \{1, 7\} \text{ (and } \{1\})$	B1 [1]	All correct, no extras	Allow {1} included or omitted
2	(iv)	in $H 3^2 \equiv 9 \pmod{10}$ so 3 not order 2	M1	Shows and states that 3 or that 7 is not order 2 (or is order 4)	
		no element of order > 2 in G so not isomorphic	A1	Completely correct reasoning	
			[2]	Or, if zero, then SC1 for merely stating comparable orders and then saying that "orders don't correspond, so not isomorphic" Or table for H with saying "not all elements self inverse, so not isomorphic"	

4727

Question	Answer	Marks	G	uidance
3	$u = y^3 \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	M1		Or $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}u^{-\frac{2}{3}}\frac{\mathrm{d}u}{\mathrm{d}x}$
	in DE gives $x \frac{\mathrm{d}u}{\mathrm{d}x} + 2u = \frac{\cos x}{x}$	A1		
	$\frac{\mathrm{d}u}{\mathrm{d}x} + \frac{2}{x}u = \frac{\cos x}{x^2}$	B1	Divide	Both sides
	$I = \exp\left(\int \frac{2}{x} dx\right) = e^{2\ln x}$	M1	Correctly integrates	Must have form $\frac{du}{dx} + f(x)u = g(x)$
	$=x^2$	A1		Can be implied by subsequent work
	$x^2 \frac{\mathrm{d}u}{\mathrm{d}x} + 2xu = \cos x$			
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2u\right) = \cos x$			
	$x^2 u = \sin x (+A)$	M1	Integrate	
	$u = \frac{\sin x + A}{x^2}$	A1	Or gives GS in implicit form	Must include constant at this stage
	$y = \left(\frac{\sin x + A}{x^2}\right)^{\frac{1}{3}}$	A1		
		[8]		

4727

(Question		Answer	Marks	G	uidance
4	(i)		Sketch	B1		Must have axes, A shown 3 across and either scale (or co-ordinates) with B in rough position, or angle and distance on argand diagram. No inconsistencies
			$OA = 3 = 3, OB = 3e^{\frac{1}{3}\pi i} = 3$ and $\angle BOA = \frac{1}{3}\pi$ hence $\triangle OAB$ equilateral	M1 A1 [3]	Can be seen on diagram	Alt. Attempts AB or second angle
4	(ii)		$3e^{-\frac{1}{3}\pi i}$	M1A1	Or $3e^{\frac{5}{3}\pi i}$. Isw M1 for evidence they are considering BA, or for $\frac{3}{2} - \frac{3}{2}\sqrt{3}i$	For full marks can use CiS form, or clear polar co-ordinates, in radians. Not C-iS
4	(iii)		$\left(2, 2, \frac{1}{2}\pi i\right)^{5}$ $25, \frac{5}{2}\pi i$	[2]	T 15 1	
			$(3-3e^3) = 3^5 e^{-3}$	MI	For mod ⁻ and arg \times 5	"Hence" so must use 'their $3e^{-\frac{1}{3}\pi t}$,
			$=243\left(\cos\frac{5}{3}\pi-\mathrm{i}\sin\frac{5}{3}\pi\right)$	Alft	aef	
			$=\frac{243}{2}+\frac{243}{2}\sqrt{3}i$	B1		Condone use of "121.5".
				[3]		

4727

	Question	Answer	Marks	G	uidance
5		AE: $\lambda^2 + 2\lambda + 5 = 0$	M1		
		$\lambda = -1 \pm 2i$	A1		
		CF: $e^{-x} (A\cos 2x + B\sin 2x)$	A1ft		Or $Ae^{-x}\cos(2x+\alpha)$ Must be in real form
		PI: $y = a e^{-x}$	B1		If PI $y = ax e^{-x}$, then max of M1,A1,A1, B0,M1,A0,A0 (since cannot be consistent) M1, M1, A1.
		$a e^{-x} - 2a e^{-x} + 5a e^{-x} = e^{-x}$ 4a = 1	M1	Differentiate & substitute	Must have a constant in "their PI"
		$a = \frac{1}{4}$	A1		
		GS: $y = e^{-x} \left(\frac{1}{4} + A \cos 2x + B \sin 2x \right)$	A1ft		Must have " $y =$ "
		$\frac{dy}{dx} = -e^{-x} \left(\frac{1}{4} + A\cos 2x + B\sin 2x \right)$ $+ e^{-x} \left(-2A\sin 2x + 2B\cos 2x \right)$	M1*	Differentiate their GS of form $y = e^{-x} (P + A\cos nx + B\sin nx)$ where P is constant or linear term, n not 0 or 1	Allow one error
		$x = 0, \frac{dy}{dx} = 0 \Longrightarrow -\left(\frac{1}{4} + A\right) + 2B = 0$ $x = 0, y = 0 \Longrightarrow \frac{1}{4} + A = 0$	*M1	Use conditions	But M0 if leads to solution of $y = 0$
		$A = -\frac{1}{4}, B = 0$	A1ft	From their GS	
		$y = \frac{1}{4} e^{-x} \left(1 - \cos 2x \right)$	A1 [11]		Must have ' $y =$ ' and be in real form
6	(i)	x = 2t + 1, y = 5t - 1, z = t + 2	B1	Parameterise	or B1 for y and z correctly in terms of x e.g. $2y = 5x - 7$, $2z = x + 3$
		(2t+1)+2(5t-1)-2(t+2)=5		Substitute into plane	Then M1 for full simultaneous equations method.
		$\Rightarrow 10t = 10 \Rightarrow t = 1$	M1	Solve	
		Intersect at $(3, 4, 3)$	A1 [3]	cao	Accept vector form

(Question		Answer	Marks	Guidance		
6	(ii)		$\cos\left(\frac{1}{2}\pi - \theta\right) = \frac{\begin{vmatrix} 2\\5\\1 \end{vmatrix} \cdot \begin{vmatrix} 1\\2\\-2 \end{vmatrix}}{\begin{vmatrix} 2\\-2 \end{vmatrix}} = \frac{10}{3\sqrt{30}}$	MIA1	27.50	Attempt to find angle or its complement	
			$\theta = 0.654$	[3]	or 37.5°		
6	(iii)		If <i>P</i> is point of intersection and <i>Q</i> is required point, $\overrightarrow{PQ} = \lambda \begin{pmatrix} 2\\5\\1 \end{pmatrix}$ so $\sin\theta = \frac{2}{PQ} = \frac{2}{ \lambda \sqrt{30}}$	M1*	or $\overrightarrow{PQ} \cdot \hat{\mathbf{n}} = \pm 2$ where $\mathbf{n} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$	Use \overrightarrow{PQ} with right angled triangle or consider component of \overrightarrow{PQ} in direction of normal vector.	
			$\frac{10}{3\sqrt{30}} = \frac{2}{ \lambda \sqrt{30}}$	M1		Valid method to set up equation in λ alone.	
			$\lambda = \pm \frac{3}{5}$	A1		(May work from general point on original equation)	
			points have position vectors $\begin{pmatrix} 3\\4\\3 \end{pmatrix} \pm \frac{3}{5} \begin{pmatrix} 2\\5\\1 \end{pmatrix}$	*M1	Dep on 1 st M1		
			points at (1.8, 1, 2.4) and (4.2, 7, 3.6)	A1	сао		
			Alternative:				
			Distance = $\frac{ 2t+1+2(5t-1)-2(t+2)-5 }{\sqrt{1^2+2^2+2^2}} = 2$	M1* A1		Zero if formula used without substitution in of parametric form.	
			$\Rightarrow t = 0.4 \text{ or } 1.6$ (1.8, 1, 2.4) and (4.2, 7, 3.6)	*M1 A1 A1 [5]	Solve At least one value found		

	Question		Answer	Marks	Guidance		
7	(i)		$(ab)^6 = ababab = a^6b^6$ as commutative	M1	Must give reason	Some demonstration that they understand commutativity	
			$=(a^2)^3(b^3)^2=e^3e^2=e$	A1	Using orders of <i>a</i> and <i>b</i>		
			So <i>ab</i> has order 1, 2, 3, or 6				
			$(b \neq a \Rightarrow ab \neq a^2 \Rightarrow ab \neq e \text{ so } ab \text{ not order } 1)$			Condone absence of this line	
			$(ab)^2 = a^2b^2 = eb^2 = b^2$ and b not order 2, so ab not order 2	M1	Consider other cases	Insufficient to merely have simplified all $(ab)^n$	
			$(ab)^3 = a^3b^3 = aa^2e = aee = a \neq e$, so <i>ab</i> not order 3				
			(So must be order 6)	A1 [4]	AG Complete argument		
7	(ii)		ac has order 18	B1		Or <i>abc</i> or generator	
			18 is LCM of 2 and 9, (so we can use a similar argument to part (i))	M1	or explicit consideration of other cases		
			So as <i>G</i> has an element of order 18 it must be cyclic.	A1	AG Complete argument		
				[3]			
8	(i)		$\cos 5\theta + i \sin 5\theta = (\cos \theta + i \sin \theta)^5$	B1	Or $\cos 5\theta = re\{(\cos \theta + i \sin \theta)^5\}$		
			$=c^{5}+5ic^{4}s-10c^{3}s^{2}-10ic^{2}s^{3}+5cs^{4}+is^{5}$	M1		No more than 1 error, can be unsimplified	
			$\cos 5\theta = c^5 - 10c^3s^2 + 5cs^4$	M1	Take real parts		
			$=c^{5}-10c^{3}(1-c^{2})+5c(1-c^{2})^{2}$	M1			
			$= c^5 - 10c^3 + 10c^5 + 5c - 10c^3 + 5c^5$				
			$\cos 5\theta = 16c^5 - 20c^3 + 5c$	A1	AG		
				[5]			

(Question		Answer	Marks	Guidance	
8	(ii)		Multiplying by x gives $16x^5 - 20x^3 + 5x = 0$			Hence, so no marks for using quadratic at this stage.
			letting $x = \cos \alpha$ gives $\cos 5\alpha = 0$	M1		
			hence $5\alpha = \frac{1}{2}\pi, \frac{3}{2}\pi, \frac{5}{2}\pi, \frac{7}{2}\pi, \frac{9}{2}\pi$	A1		
			$\alpha = \frac{1}{10}\pi, \frac{3}{10}\pi, \frac{5}{10}\pi, \frac{7}{10}\pi, \frac{9}{10}\pi$			
			$\cos\frac{5}{10}\pi = 0$ which is not a root	A1		
			so roots $x = \cos \frac{1}{10} \pi$, $\cos \frac{3}{10} \pi$, $\cos \frac{7}{10} \pi$, $\cos \frac{9}{10} \pi$	A1		
				[4]		
8	(iii)		$16x^4 - 20x^2 + 5 = 0 \Leftrightarrow x^2 = \frac{20 \pm \sqrt{80}}{32}$	B1		Can be gained if seen in (ii)
			cos decreases between 0 and π so $\cos \frac{1}{10}\pi$ is			
			greatest root	M1		
			so $\cos\frac{1}{10}\pi = \sqrt{\frac{20 + \sqrt{80}}{32}} = \sqrt{\frac{5 + \sqrt{5}}{8}}$	A1	Dep on full marks in (ii)	
				[3]		